我们通过随时间变化的因素负载开发了受惩罚的两次通用回归。第一遍中的惩罚对时间变化驱动因素强加了稀疏性,同时还通过正规化适当的系数组来维持与无契约限制的兼容性。第二次通过提供了风险溢价估计,以预测股权超额回报。我们的蒙特卡洛结果以及我们对大量横断面数据集的个人股票集的经验结果表明,如果不进行分组的惩罚可能会屈服于几乎所有估计的时变模型,违反了无标准限制。此外,我们的结果表明,与惩罚方法相比,所提出的方法在没有适当分组或时间不变的因子模型的情况下减少了预测错误。
translated by 谷歌翻译
大多数机器学习方法和算法给出了预测性能的高优先级,这可能并不总是对应于用户的优先级。在许多情况下,从工程到遗传学的不同领域的从业者和研究人员都需要尤其是在例如并非所有属性可用的环境中的结果的解释和可重复性。因此,需要使机器学习算法的输出更加解释,并提供用户可以根据属性可用性选择的“等价”学习者(在预测性能方面)来进行测试和/或利用这些学习者以获取预测/诊断目的。为了解决这些需求,我们建议研究一个组合筛选和包装方法方法的过程,这些过程基于用户指定的学习方法,贪婪地探讨了属性空间,以找到稀疏的学习者库,随后的低数据收集和存储成本。这种新方法(i)提供了可以容易解释的低维网络,并且(ii)基于具有相同预测功率的强大学习者的属性组合的多样性提高结果的潜在可重量。我们称这种算法“稀疏包装算法”(SWAG)。
translated by 谷歌翻译
目的:本研究评估了市售可解释的AI算法在增强临床医生在胸部X射线(CXR)上鉴定肺癌的能力的影响。设计:这项回顾性研究评估了11位临床医生在胸部X光片中检测肺癌的表现,并在有和没有市售的AI算法的帮助下(红点,观察到),预测CXRS可疑的肺癌。根据临床确定的诊断评估了临床医生的表现。设置:该研究分析了NHS医院的匿名患者数据;该数据集由成年患者(18岁及以上)的400张胸部X光片组成,他们在2020年进行了CXR,并提供相应的临床文本报告。参与者:由11位临床医生(放射科医生,放射科医生受训者和报告射线照相师)组成的读者小组参加。主要结果指标:临床医生在CXR上检测肺癌的总体准确性,敏感性,特异性和精度,有或没有AI输入。还评估了有或没有AI输入的临床医生与绩效标准偏差之间的协议率。结果:临床医生对AI算法的使用导致肺部肿瘤检测的总体性能提高,从而达到了在CXR上鉴定出的肺癌的总体增长17.4% ,分别增加了13%和13%的阶段1和2期肺癌的检测,以及临床医生表现的标准化。结论:这项研究在AI算法的临床实用性方面表现出了巨大的希望,可以通过整体改善读者表现来改善早期肺癌诊断和促进健康平等,而不会影响下游成像资源。
translated by 谷歌翻译
随着各种科学领域中数据的越来越多,生成模型在科学方法的每个步骤中都具有巨大的潜力来加速科学发现。他们最有价值的应用也许在于传统上提出假设最慢,最具挑战性的步骤。现在,正在从大量数据中学到强大的表示形式,以产生新的假设,这对从材料设计到药物发现的科学发现应用产生了重大影响。 GT4SD(https://github.com/gt4sd/gt4sd-core)是一个可扩展的开放源库,使科学家,开发人员和研究人员能够培训和使用科学发现中假设生成的最先进的生成模型。 GT4SD支持跨材料科学和药物发现的各种生成模型的用途,包括基于与目标蛋白,OMIC剖面,脚手架距离,结合能等性质的分子发现和设计。
translated by 谷歌翻译
在许多应用程序中,信号denoising通常是任何后续分析或学习任务之前的第一个预处理步骤。在本文中,我们建议采用受信号处理启发的深度学习denoising模型,这是一个可学习的小波数据包变换版本。所提出的算法具有很少的可解释参数的显着学习能力,并且具有直观的初始化。我们提出了对参数的学习后修改,以使denoising适应不同的噪声水平。我们评估了提出的方法在两个案例研究中的性能,并将其与其他最先进的方法进行比较,包括小波schrinkage denoising,卷积神经网络,自动编码器和U-NET深模型。第一个案例研究基于设计的功能,通常用于研究算法的降解性质。第二个案例研究是音频背景删除任务。我们演示了所提出的算法如何与信号处理方法的普遍性以及深度学习方法的学习能力有关。特别是,我们评估了在用于培训的课程内外的结构化噪声信号上获得的降解性能。除了在培训课程内部和外部具有良好的降级信号外,我们的方法还表明,当添加不同的噪声水平,噪声类型和工件时,我们的方法尤其强大。
translated by 谷歌翻译
从空中和卫星图像提取自动化路线图是一个长期存在的挑战。现有算法基于像素级分段,然后是矢量化,或者使用下一个移动预测的迭代图构造。这两种策略都遭受了严重的缺点,特别是高计算资源和不完整的产出。相比之下,我们提出了一种直接在单次通过中缩小最终道路图的方法。关键思想包括组合完全卷积的网络,这些网络负责定位点,例如交叉点,死头和转弯,以及预测这些点之间的链路的图形神经网络。这种策略比迭代方法更有效,并允许我们通过在保持训练端到端的同时消除生成起始位置的需要来简化培训过程。我们评估我们对流行的道路流数据集上现有工作的方法,并实现竞争结果。我们还将速度基准测试,并表明它优于现有的方法。这为嵌入式设备打开了飞行中的可能性。
translated by 谷歌翻译
已经提出了几十年来捕获胶质瘤的生长,最常见的原发性脑肿瘤的反应扩散模型。然而,关于估计这些模型的初始条件和参数值的严重局限性将其临床用作作为个性化工具。在这项工作中,我们调查了深度卷积神经网络(DCNN)来解决现场遇到的缺陷的能力。基于从磁共振(MR)数据的磁共振(MR)数据产生的1,200种合成肿瘤,我们证明了DCNN在单个时间点仅从两个成像轮廓重建整个肿瘤细胞密度分布的能力。通过在先前时间点提取额外的成像轮廓,我们还证明了DCNN准确估计模型的各个扩散性和增殖参数的能力。从这些知识来看,最终可以使用该模型精确地捕获稍后时间点处的肿瘤细胞密度分布的时空演变。我们终于展示了我们对真正的胶质母细胞瘤患者的先生数据的适用性。这种方法可以打开反应扩散生长模型的临床应用的视角,用于肿瘤预后和治疗计划。
translated by 谷歌翻译
高频(HF)信号在工业世界中普遍存在,对于监测工业资产具有很大的用途。大多数深度学习工具都是针对固定和/或非常有限的尺寸的输入和深入学习的许多成功应用,因为输入的工业情境使用作为输入的提取特征,这是手动和通常艰苦地获得原始信号的紧凑型表示。在本文中,我们提出了一个完全无监督的深度学习框架,能够提取原始HF信号的有意义和稀疏表示。我们嵌入了我们的架构的快速离散小波变换(FDWT)的重要属性,如(1)级联算法,(2)将小波,缩放和转换滤波器功能链接在一起的共轭正交过滤器属性,以及(3)系数去噪。使用深度学习,我们使这座架构完全学习:小波基座和小波系数去噪都是可知的。为实现这一目标,我们提出了一种新的激活函数,该激活函数执行小波系数的学习硬阈值。通过我们的框架,Denoising FDWT成为一个完全学习的无监督工具,既不需要任何类型的预处理,也不需要任何关于小波变换的先前知识。我们展示了在在开源声音数据集上执行的三种机器学习任务中嵌入所有这些属性的好处。我们对每个物业对架构的性能的影响进行了消融研究,达到了基线高于基线的结果和其他最先进的方法。
translated by 谷歌翻译